SOLAR RADIO NOISE STORM AT 164 MHZ

FROM NANÇAY RADIOHELIOGRAPH

FEBRUARY 2006

	HELIOGRAPHICS POSITIONS MEAN VALUES ¹		IMP ²	OBSERVINO	3 TIME ³
	E-W	S-N		START(UT)	END(UT)
16/02/06*	-0.21	+0.18	I	8H35 E	15H35 D

SOLAR RADIO NOISE STORM AT 327 MHZ

FROM NANÇAY RADIOHELIOGRAPH

FEBRUARY 2006

	HELIOGRAPHI MEAN V		IMP ²	OBSERVING TIME ³	
DAY	E-W	S-N		START(UT)	END(UT)
16/02/06*	-0.21	+0.13	I	8H35 E	15H35 D

OTHERS DAYS: NO DETECTABLE NOISE STORM

- * For the days marked by an asterisk, intense ionopheric gravity waves are observed during the whole day. Without a more detailed analysis, leading to decreased uncertainties in the deviation, the positions which are indicated are estimatedithin 0.2 R
- ** Following a large burst

*** importance not well determined due to the proximity off the very strong other source

**** no flux measurements available

¹ POSITIVE E-W AND S-N COORDINATES CORRESPOND TO THE N-W QUADRANT

² IMP1: FLUX< 5 SFU IMP2: 5< FLUX < 20 SFU IMP3: 20< FLUX <100 SFU IMP4: 100< FLUX <300 SFU IMP5> 300 SFU

³ E NOISE STORM IN PROGRESS AT THE BEGINNING OF THE NANÇAY OBSERVATIONS

D NOISE STORM IN PROGRESS AT THE END OF THE NANCAY OBSERVATIONS